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Abstract

A new implicit fully electromagnetic particle in cell method is presented in which the full ion dynamic and all the elec-
tron guiding centre drifts of a magnetized collisionless plasma are retained. This code retains the inertial effects on the elec-
trons. It must be used for time steps larger or so than an electron cyclotron period, it is only valid for an electron plasma
beta be < 1. Therefore, it is efficient only with strongly magnetized electrons. On the opposite, the constraint on the ions
bi < mi=me (where mi=me is the ion to electron mass ratio) is very weak. This method allows for the simulation of an ion-
beam instability (triggering electrostatic ion cyclotron waves and filamentation of the plasma), the propagation of MHD
waves, and ion-temperature anisotropies (mirror and/or cyclotron waves), at a relatively low cost. This method could
become a useful tool for the modelization of space plasmas, quite complementary with other methods such as Hall-
MHD, hybrid codes, or other implicit particle codes.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

When simulating an electromagnetic plasma with an explicit particle in cell (PIC) code, several time scales
must be taken into account. The aim of an implicit code is to solve the equations of evolution of a dynamical
system without keeping the high frequency fluctuations. For instance time decentered schemes are made impli-
cit by the time-discretization method, in which the intermediate time level is slightly decentered [1–6]. In the
direct implicit scheme, a few variables of the system (at time step n) are replaced by time averaged implicit
variables. These implicit variables depend both on the state of the system in the past (time n� 1) and in
the future (time nþ 1) [7,8].

Our purpose is to develop an integration scheme for particle in cell (PIC) algorithm, that allows the descrip-
tion of the ion full dynamics and the electron guiding centre dynamics, based on the direct implicit algorithm,
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accurate to the second order in Dt. We aim to get rid of the constraints imposed by the light waves (propa-
gating at the velocity c and not interfering with the plasma), the electron gyromotion (at frequency xce),
and the plasma oscillations (at frequency xpe), and in case of implicitness over the ion motion, the ion plasma
oscillations (at frequency xpi).

We need to solve the Maxwell’s equations
r� E ¼ � oB

ot
; ð1Þ

r �H ¼ Jþ oD

ot
; ð2Þ

r �D ¼ q; ð3Þ
r � B ¼ 0: ð4Þ
The Maxwell equations are coupled to the particle dynamical data through the definition of the charge q and
the electric current J densities. The ion equation of motion is
m
dv

dt
¼ eðEþ v� BÞ: ð5Þ
To the first order in m=e, the instantaneous acceleration dv=dt of the guiding centre position r is given [9] by
m
dv

dt
¼ �e EðrÞ þ v� BðrÞ½ � � lrBðrÞ; ð6Þ
where B is the modulus of the magnetic field B. The basic Eq. (6) is similar to the particle equation of motion,
provided that we use EðrÞ þ ðl=eÞrBðrÞ instead of EðrÞ. Note that Eq. (6) contains all the drift terms, includ-
ing the magnetic field gradient, the magnetic field line curvature and the polarization drifts. But this equation
gives a solution whose instantaneous value is not physically relevant, only the low frequency part of the solu-
tion has a physical meaning (the guiding centre drifts). Therefore, it can be solved with a time step Dtxce > 1,
and the fast part of the solution must be eliminated. The removing of the high frequency part of the solution is
done through and implicit definition of the transverse velocity. Eq. (6) has already been implemented in a PIC
guiding centre code for the simulation of highly magnetized plasmas [10]. (This code was explicit upon the
plasma fluctuations at the frequency xpe.)

We want a code applicable to highly magnetized plasmas (xce � xpe) and more weakly magnetized plasmas
(0 < xce � xpe).

The scheme introduced in this paper is not the only PIC implicit algorithm.
Tanaka [1,2] developed an implicit PIC code, called HIDENEK, for collisionless plasmas. This code exists

in two versions, one for the electron full dynamics, and one with electron guiding centres. We are, in this
paper, concerned with the second version. It is based on time decentering implicit scheme, and it is first order
accurate in time. The computation cycle is as follows: the particles are advanced at time step n, and the charge
qn and current densities J n are derived from the particle positions and velocities. Then, the Maxwell’s equa-
tions and the equation of evolution (qn ! qnþ1) of the charge and current density evolution are coupled
and solved, providing the electric field Enþ1, and closing a time step cycle. Let us notice that the guiding centre
equations in HIDENEK are the classical drift equations that provide the time derivative of the parallel veloc-
ity and the instantaneous drifts in the perpendicular directions.

The moment method, implemented in the codes VENUS and CELESTE developed at the Los Alamos
National Laboratory [3–6] is also based on time decentered discretized equations but the computational cycle
is different. The charge and current densities are considered as the first moments of the particle distribution
function and they can be advanced in time through the resolution of fluid-like equations: after the computa-
tion of the new particle velocities and positions, the charge qn and current densities J n at time step n are com-
puted, as well as a few tensors that allows to find directly the values of qnþ1 and current densities J nþ1. Then,
the Maxwell equations are solved in a way that do not involve any coupling with the equation of motion of the
particles.

A code developed by Hewett and Langdon [8] is based on the direct implicit algorithm and is second order
accurate in time. In any direct implicit algorithm, the choice of the variables that are averaged determine what
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kind of high frequency phenomena can be made implicit. Hewett and Langdon’s code was designed to get rid
of the constraints on the time step imposed by the light waves and by the electron (and sometimes the proton)
plasma period. It was shown [10] that it is not well adapted to plasmas with a high magnetic field, because the
constraint xceDt << 1 must be filled. Nevertheless, Hewett and Langdon’s work is an important reference
used along the present paper. Many developments of the algorithm introduced here can be considered as
extensions of the Hewtett and Langdon scheme to the case of magnetized plasmas to be simulated with a time
step that is large in comparison of an electron cyclotron period.

The physical variables are reduced to dimensionless variables. Time and frequencies are normalized by the
electron plasma frequency xp0 that correspond to a reference background electron density n0. Velocities are
normalized to the speed of light c, and the magnetic field is given in terms of the dimensionless electron gyro-
frequency xce=xp0. The mass unit is the electron mass me. Therefore, the units (starting from the Maxwell Eq.
in the MKSA system) are c=xp0 for distances, xp0=c for wave vectors, e for charges, en0 for the charge density,
cxce=xp0 for the electric field, and ce=xp0 for the magnetic moment l of the electrons. In the following parts of
this paper, all the equations, numerical values and figures are expressed in this system of units.

The paper starts with a presentation of the implicit discretized equations and the way they are solved. The
scheme has been implemented in a 2D code, and the results of a few tests are presented in Section 2. The con-
ditions of use of this code are discussed in Section 3. A more general discussion and the conclusion are pre-
sented in Section 4.

2. Implicit discretized equations

2.1. The Maxwell’s equations

The finite differenced Maxwell’s equations are the same as in [8]. The Faraday equation is made implicit
Bnþ1=2 � Bn�1=2 ¼ �Dtr� En: ð7Þ
The use of En allows for the time filtering of the light waves of frequency xl when xlDt > 1:
En ¼
1

2
½Enþ1 þ En�1�: ð8Þ
The Ampere equation does not contain implicit terms. Therefore, the displacement current is fully retained. As
it plays an important role in the electron inertial effect, it implies that the electron inertial length (or skin
depth) c=xpe must be retained,
Enþ1 � En ¼ Dtr� Bnþ1=2 � DtJnþ1=2: ð9Þ
As the magnetic field at time nþ 1 is needed in the particle pusher (this is also the case in explicit PIC codes),
the following extrapolation is used but it is not a part of the Maxwell equations iteration process:
Bnþ1 � Bnþ1=2 ¼ �
1

2
Dtr� Enþ1: ð10Þ
2.2. The ion dynamics

The resolution of the ion full dynamic equations has been largely described in the literature, both for expli-
cit [11,12] and implicit calculations [8]. In all cases,
xnþ1 ¼ xn þ Dtvnþ1=2: ð11Þ
The computation of the velocity vnþ1=2 depends on the time step.
For time steps 0:4x�1

pi > Dt, where xpi ¼ ðne2=�0miÞ1=2 is the ion plasma frequency, we can compute the ion
velocity explicitly:
vnþ1=2 ¼ vn�1=2 þ Dt
q
m

En þ
q

2m
ðvnþ1=2 þ vn�1=2Þ � BnðxnÞ

h i
; ð12Þ
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where m is the reduced ion mass and q is the reduced electric charge (q ¼ þ1 for hydrogen ions). The ion veloc-
ity Eq. (12) is the same as in explicit codes and can be solved with the Boris algorithm [11].

For time steps 0:4x�1
ci > Dt > 0:4x�1

pi , the ion dynamics must be treated implicitly. We adopt, the direct
implicit approach described in [7,8].
vnþ1=2 ¼ vn�1=2 þ Dt �an þ
q

2m
ðvnþ1=2 þ vn�1=2Þ � BnðxnÞ

h i
: ð13Þ
The implicit ion acceleration is
�an ¼
1

2

q
m

Enþ1 þ �an�1

� �
: ð14Þ
The velocity is cut into a prediction vnþ1=2, and a correction ~vnþ1=2. Following [7,8],
~vnþ1=2 ¼ vn�1=2 þ
Dt
2

�an�1 þ
qDt
2m
ð~vnþ1=2 þ vn�1=2Þ � BnðxnÞ; ð15Þ
the other terms are contained in the correction:
dvnþ1=2 ¼
qDt
2m
ðEnþ1 þ dvnþ1=2 � BnÞ: ð16Þ
The solution is
~vnþ1=2 ¼
1

1þH2
I

ðI�HI �þHIHIÞ � wn; ð17Þ

dvnþ1=2 ¼
qDt
2m

1

1þH2
I

ðI�HI �þHIHIÞ � Enþ1; ð18Þ
where HI and wn are defined by
HI ¼ þ
qDt
2m

BnðxnÞ; ð19Þ

wn ¼ vn�1=2 þ
Dt
2

�an�1 þ vn�1=2 �HIðxnÞ: ð20Þ
The total velocity is
vnþ1=2 ¼ ~vnþ1=2 þ dvnþ1=2: ð21Þ
The case Dt > 0:4x�1
ci corresponds to the gyrokinetic approach and is not treated in the present paper.

2.3. The electron guiding centre velocities

The electron guiding centre Eq. (6) is formally very similar to the full dynamic equation of motion. As we
neglect the electron larmor radius, the electromagnetic field is considered at the position of the guiding centre.
The charge density and the current assignments is done at the position of the guiding centre. The magnetic
moment l, which is the first adiabatic invariant, is supposed to be constant.

In order to eliminate the gyromotion of the particles around the magnetic field line, we introduce the
implicit velocity �v in the term v� BðrÞ of Eq. (6). The gyromotion affects only the perpendicular com-
ponent of the velocity. An implicit parallel acceleration �an is introduced in order to damp the parallel
oscillations of the guiding centres that would give otherwise plasma fluctuations at the frequency xpe; it
is defined by
�an ¼
1

2

q
m

Enþ1 þ �an�1

� �
: ð22Þ
A discretized version of Eq. (6) must have the form
vnþ1=2 ¼ vn�1=2 þ Dt �an �
l
m
rBnðxnÞ þ

q
m

un � BnðxnÞ
h i

; ð23Þ
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where un is a reasonable approximation of the perpendicular velocity at time n. The implicit velocity �v is intro-
duced into the definition of un so as to damp the perpendicular gyromotion.
un ¼
1

2
ðvnþ1=2 þ �vn�1=2Þ; ð24Þ

�vn�1=2 ¼
1

2
ðvnþ1=2 þ �vn�3=2Þ: ð25Þ
Using quantities known at time step n, we cannot solve (23) because we do not know �an (this vector depends
on Enþ1 that is not yet computed). Therefore, the guiding centre velocity vnþ1=2 is cut in a predicted part ~vnþ1=2

and a correction dvnþ1=2, that depend themselves on the prediction ~�an and the correction d�an of the implicit
parallel acceleration �an. Gathering Eqs. (23)–(25),
~vnþ1=2 þ dvnþ1=2 ¼ vn�1=2 þ
Dt
2

�an�1 �
lDt
m
rBn þ

qDt
4m

�vn�3=2 � BnðxnÞ � ~vnþ1=2 �HnðxnÞ þ
Dt
2

q
m

Enþ1

� dvnþ1=2 �HnðxnÞ; ð26Þ
where H defined by
H ¼ 3qDt
4m

BnðxnÞ: ð27Þ
It is necessary to decide which parts of this equation come into the prediction, and which parts come into the
correction. This question is addressed in Appendix A and the solution retained in this paper consists of a pre-
diction that contains half of the electric acceleration in the parallel direction, and the full acceleration in the
perpendicular direction,
~vnþ1=2 ¼ wn � ~vnþ1=2 �HnðxnÞ: ð28Þ
The vector wn is known at time step n and defined by
wn ¼ vn�1=2 þ
Dt
2
½2�an�1 � ð�an�1 � bnÞbn� �

lDt
m
rBn þ

qDt
4m

�vn�3=2 � BnðxnÞ: ð29Þ
The velocity correction contains the other terms
dvnþ1=2 ¼
Dt
2

q
m

Enþ1 � ðI� bnbnÞ � �an�1

h i
þ dvnþ1=2 �H; ð30Þ
where I is the identity tensor, and ðbnbnÞi;j ¼ bibj. Let us define
a�n�1 ¼ ðI� bnbnÞ � �an�1; ð31Þ

the solutions of (28) and (30) are:
~vnþ1=2 ¼
1

1þH2
ðI�H�þHHÞ � wn; ð32Þ

dvnþ1=2 ¼ þ
qDt
2m

1

1þH2
ðI�H�HHÞ � Enþ1 �

m
q

a�n�1

� �
: ð33Þ
The total velocity is
vnþ1=2 ¼ ~vnþ1=2 þ dvnþ1=2: ð34Þ
The position of the electron guiding centres is the sum of a prediction and a correction
xnþ1 ¼ xn þ Dtvnþ1=2; ð35Þ
~xnþ1 ¼ xn þ Dt~vnþ1=2; ð36Þ
dxnþ1 ¼ Dtdvnþ1=2: ð37Þ
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2.4. The charge density

The fields are coupled to the particles by the charge density and the current equations. The charge density
assigned to the grid position Xj is
qnþ1 ¼
X

s

qs

X
i

SðXj � xnþ1Þ; ð38Þ
where S is the shape factor that relates the species s particle number i to the grid located at position Xj.

2.5. General equations of the electric current

The current is the sum of the current carried by the ions, and the electron current. The ion current is derived
from the velocities:
Jnþ1=2;ion ¼ q
X

i

vnþ1=2

1

2
½SðXj � xnÞ þ SðXj � xnþ1Þ�; ð39Þ
with q ¼ þ1 for hydrogen ions. The electron current is the sum of the current Jnþ1=2;GC carried by the electron
guiding centre velocities and the electron guiding centre magnetization current Jnþ1=2;M .
Jnþ1=2;GC ¼ q
X

i

vnþ1=2
1

2
½SðXj � xnÞ þ SðXj � xnþ1Þ�; ð40Þ
with q ¼ �1. The magnetization current �r� lb comes from the variation of magnetic field seen by the elec-
trons during their gyromotion around their guiding centre. The vector b ¼ B=B is the magnetic field direction.

The magnetization current must even be retained when the electron Larmor radius is neglected in the equa-
tion of motion.
Jnþ1=2;M ¼ �
X

i

r� libnþ1=2ðxnþ1=2Þ
1

2
½SðXj � xnÞ þ SðXj � xnþ1Þ�: ð41Þ
The total current is
Jnþ1=2 ¼ Jnþ1=2;ion þ Jnþ1=2;GC þ Jnþ1=2;M : ð42Þ
2.6. The electric field equation

The field discretized Maxwell’s equations can be rearranged to make an equation for Enþ1 as a function of
quantities that are known at time steps n and n� 1=2. Using (9), (7) and (8) yields
Enþ1 þ
Dt2

2
r�r� Enþ1 ¼ En þ Dtr� Bn�1=2 �

Dt2

2
r�r� En�1 � DtJnþ1=2: ð43Þ
To get the electric field equation, we still have to express Jnþ1=2 in (43) as a function of Enþ1 and known data.
The current Jnþ1=2 comes from Eq. (42).

2.7. Contribution of the ion motions to the field equation

In the explicit case, the ion positions and velocities given by Eq. (12) do not depend on Enþ1, the ion current
(39) do not depend either on Enþ1 and appears entirely in the right side of Eq. (43).

In the implicit case, following [8], the ion current consists of a prediction and a correction
~Jnþ1=2;ionðXjÞ ¼ þqi

X
i

~vnþ1=2

1

2
½SðXj � xnÞ þ SðXj � ~xnþ1Þ�; ð44Þ

dJnþ1=2;ionðXjÞ ¼ þq
X

i

~vnþ1=2

1

2
dx � SðXj � ~xnþ1Þ: ð45Þ
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After the use of simplified differencing, it is shown in [8] that
dJnþ1=2;ionðXjÞ ¼
1

Dt
vion � Enþ1 �r� Kion � Enþ1;
where
vion ¼
qDt2

2m
~qion

1

ð1þH2
I Þ
ðI�HI �þHIHIÞ; ð46Þ

Kion ¼ þ
q2Dt2

4m

X
ion

~vnþ1=2SðXj � ~xnþ1Þ
1

ð1þH2
I Þ
ðI�HI �þHIHIÞ: ð47Þ
The term that depend on K would be in Dt3 in the electric field Eq. (43) and it is divided by the ion mass. Un-
like Hewett and Langdon [8], we do not retain it in the current correction equation. We prefer to use the sim-
pler form:
dJnþ1=2;ionðXjÞ ¼
1

Dt
vion � Enþ1: ð48Þ
2.8. Contribution of the electron guiding centre motions to the field equation

As the electron velocities and positions depend on Enþ1, Eqs. (32)–(34), can be injected in (40), but the sum
has to be done over the particles with a rotation tensor ð�H�þHHÞ that changes for every particle, as HðxnÞ
is defined for each particle. This is quite expensive, therefore, a different current calculation process is per-
formed, called simplified differencing [8]. This approximation consists of neglecting the variation of the mag-
netic field over the cell containing the particle. Then, the rotation tensor is computed using Hs defined at the
grid location Xj.
Hs ¼ þ
3qDt
4m

BnðXjÞ: ð49Þ
After some algebra [8] and the use of the simplified differencing approximation, it is possible to express
Jnþ1=2;GC as
Jnþ1=2 ¼ ~Jnþ1=2;GC þ dJnþ1=2;GC; ð50Þ
with a prediction and a correction
~Jnþ1=2;GCðXjÞ ¼ q
X

i

~vnþ1=2

1

2
½SðXj � xnÞ þ SðXj � ~xnþ1Þ�; ð51Þ

dJnþ1=2;GC ¼
X

i

þq½dvnþ1=2SðXj � ~xnþ1Þ ð52Þ

� 1

2
r� SðXj � ~xnþ1Þ½~vnþ1=2 � dxnþ1��: ð53Þ
In the field Eq. (43), the electric current is multiplied by Dt. The terms proportional to a velocity introduce a
new Dt factor. We limit ourselves to terms of the second order in Dt in the field equation, therefore,
1
2
r� SðXj � ~xnþ1Þ½~vnþ1=2 � dxnþ1� (or order 3 in the field equation) is neglected.

Using (33), the electron guiding centre current correction becomes
dJnþ1=2;GC ¼
X

i

q2Dt
2m

SðXj � ~xnþ1Þ
ðI�H�þHHÞ
ð1þH2Þ

� Enþ1 �
m
q

a�n�1

� �
: ð54Þ
Let us define the tensor v
v ¼ qDt2

2m
~qGC

1

ð1þH2Þ
ðI�H�þHHÞ ð55Þ
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and the vector J�,
J� ¼ q2Dt
2m

1

ð1þH2Þ
ðI�H�þHHÞ �

X
i

SðXj � ~xnþ1Þ �
m
q

� �
a�n�1: ð56Þ
The guiding centre current correction writes
dJnþ1=2;GC ¼
1

Dt
v � Enþ1 þ J�: ð57Þ
2.9. Contribution of the magnetization current to the field equation

In the electron guiding centre magnetization current (41), the dependence on Enþ1 is linked to those of bnþ1=2

stated in (59). The dependence of bnþ1=2 on the future electric field is approximated through a linear expansion
in Enþ1. From (7) and (8),
Bnþ1=2 ¼ Bn�1=2 �
Dt
2
r� En�1 �

Dt
2
r� Enþ1: ð58Þ
Let B� ¼ Bn�1=2 � ðDt=2Þr � En�1 and ~b ¼ B�=B�. To the first order in r� Enþ1,
bnþ1=2 ¼ ~b� Dt
2B�
ðI� ~b~bÞ � r � Enþ1 ð59Þ
and ~b is a prediction of the magnetic field direction, the other part of the right-hand side of (59) is the correc-
tion. Therefore Eqs. (41) and (59) give the magnetization current:
Jnþ1=2;M ¼ �
X

i

r� li

2
~b� Dt

2B�
ðI� ~b~bÞ � r � Enþ1

� �
½SðXj � xnÞ þ SðXj � xnþ1Þ�

¼ �
X

i

r� li
~b

1

2
½SðXj � xnÞ þ SðXj � ~xnþ1Þ � dx � rSðXj � ~xnþ1Þ� �

X
i

r� li

� 1

2
� cDt

2B�
ðI� ~b~bÞ � r � Enþ1

� �
½SðXj � xnÞ þ SðXj � ~xnþ1Þ�: ð60Þ
The magnetization current can then be cut in a predicted part ~Jnþ1=2 that do not depend on the future electric
field and a correction part dJnþ1=2 that is linearly dependent on Enþ1.
Jnþ1=2;M ¼ ~Jnþ1=2;M þ dJnþ1=2: ð61Þ
The validity of the linear approximation requires ~Jnþ1=2 � dJnþ1=2.
~Jnþ1=2;M ¼ �
X

i

r� li

2
~b½SðXj � xnÞ þ SðXj � ~xnþ1Þ�; ð62Þ

dJnþ1=2;M ¼
X
GC

r� li
1

2

Dt
2B�
ðI� ~b~bÞ � ðr � Enþ1Þ½SðXj � xnÞ þ SðXj � ~xnþ1Þ�

þ l
2
½ðdxnþ1 � rÞrS � ~bþ ðdxnþ1 � rSÞr � ~b�: ð63Þ
After some algebra, the current correction is written
dJnþ1=2;M ¼
Dt
2
r� ðC � ðr � Enþ1ÞÞ þ vM � Eþ JM ; ð64Þ
where C and vM are the tensor fields defined on the simulation grid by
C ¼
X

i

li

2B�
ðI� ~b~bÞ½SðXj � xnÞ þ SðXj � ~xnþ1Þ�; ð65Þ

vM ¼ �
X

i

lio
2
xyS

2
~b� v

~q
� þ
X

i

r� ~b
li

2
rS � v

~q

� �
ð66Þ
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and JM is a vector field defined by
JM ¼
X

i

lio
2
xyS

2

J�

~q
� ~bþ

X
i

li

2

 !
rS � J

�

~q

� �
r� ~b: ð67Þ
The fields B�; ~b;B� must be derived at the position xi of each particle. This is quite expensive, therefore, the
simplified differencing [7] is applied again. Then, the C tensor is computed using B�; ~b;B� at the grid location
Xj.

2.10. Final form of the electric field equation

Injecting Eqs. (42, 48, 50, 54, 61, 62, 64) into (43), we find a new electric field equation
ðIþ vion þ vÞ � Enþ1 þ
Dt2

2
½r � ðIþ CÞ� � ðr � Enþ1Þ ¼ Q; ð68Þ

Q0 ¼ En þ Dtr� Bn�1=2 �
Dt2

2
r�r� En�1

� Dtð~Jnþ1=2;ion þ ~Jnþ1=2;GC þ J� þ ~Jnþ1=2;MÞ; ð69Þ
where a priori, Q ¼ Q0.

2.11. Poisson correction

The electric field must be a solution of the Poisson equation r � Enþ1 ¼ qnþ1. Taking the divergence of Eq.
(69) gives r � Enþ1 ¼ r �Q0. Generally r �Q0 6¼ qnþ1 and the solution E of Q ¼ Q0 does not check the Poisson
equation. Hence, a correction must be added to E. This correction is due to charge density effects and is there-
fore of electrostatic nature. Let Enþ1 ¼ E�rW be the electric field that checks both the Poisson equation and
(69). The potential W is the solution of
r � ðIþ vion þ vÞ � rW ¼ r � ðQ0 þ DtJ�Þ � ~qnþ1: ð70Þ

Therefore the electric field Enþ1 at time step nþ 1 is the difference of the solutions of the field equation Q ¼ Q0,
and of rW given by (70). The demonstration of (70) is given in Appendix B.

3. Tests and applications

A numerical simulation code has been developed following the above algorithm. This is a 2D code where all
the electromagnetic and velocity fields have three components. It is periodic in both directions. A few valida-
tion tests are presented in this section. All the validation tests presented in this paper were run on a laptop
personal computer.

3.1. Propagation of low frequency waves

We present two propagation tests of non compressional low frequency (quasi-MHD) waves, in two regimes
of plasma. In the bi-fluid cold plasma approximation used to prepare these simulations, these modes are
undamped.

The first example corresponds to the propagation of a single non compressive right-hand circularly polarized
wave mode. In MHD, this would correspond to the fast magnetosonic mode. It is not compressional because it
propagates along the magnetic field. The polarization coefficients for the initialization are computed using the
cold plasma bi-fluid equations. (The dispersion and polarization equations are detailed in Appendix C.)

The magnetic field is given by xce=xpe ¼ 0:2, the mass ratio (1836) is those of protons and electrons, the
thermal velocities correspond to cold electrons, vte ¼ 1:� 10�3, but warmer protons, vti ¼ 2:3� 10�3. The sim-
ulation box is almost 1D, with 512 � 4 cells, Dx ¼ 0:5, and the time step is Dt ¼ 10. There are 20 particles per
cell. The wavelength is significantly shorter than for MHD waves, and the theoretical phase velocity of the
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wave is V / ¼ 7:7� 10�3, quite above the Alfvén velocity V A ¼ 4:7� 10�3. The amplitude of the perturbation
is given by the ratio dB=B0 ¼ 1:� 10�2, where B0 is the ambient magnetic field. This correspond to a low level
of signal, and this simulation, if noisy, shows that a low level perturbation can propagate without being dis-
turbed by the numerical noise.

We observe that the Alfvén wave propagates with the right velocity V / ¼ 7:68� 10�3 (Fig. 1), and an elec-
tric to magnetic amplitudes ratio E=B ¼ 7:50� 10�3 that is very close to the theoretical value.

An another test has been made, with the parallel propagation of a left-hand circularly polarized wave in a
2D simulation domain. The magnetic field is given by xce=xpe ¼ 8, the mass ratio (1836) is those of protons
and electrons, the thermal velocities is vte ¼ 0:01, and T i ¼ T e. The 2D simulation box has 256 � 128 cells,
Dx ¼ 4, and the time step is Dt ¼ 10. The wavelength is shorter than for MHD waves, and the theoretical
velocity of the wave, V / ¼ 0:1618 (deduced from bi-fluid equations), is below the Alfvén velocity
V A ¼ 0:1867. Here again, the amplitude of the perturbation is given by the ratio dB=B0 ¼ 1:� 10�2, but in
the present case, B0 is 40 times higher than in the previous (rather noisy) simulation. Therefore, the wave
amplitude is well above the noise level. No wave damping is evidenced in the simulation.

We observe that the Alfvén wave propagates with the velocity V / ¼ 0:156 (Fig. 2), and an electric to mag-
netic amplitudes ratio E=B ¼ 0:156. These values are close to the theoretical prediction (0.162).

3.2. Compressive perturbation of the plasma

A perturbation with a wavelength k ¼ 122, of arbitrary magnetic and longitudinal velocity amplitudes is
used to start a quasi-1D simulation of a plasma with a magnetic field B ¼ 2 or B ¼ 0:4, vte ¼ 0:01,
vti ¼ 2:3� 10�4. The perturbation consists of a sinusoidal perpendicular magnetic field dB of amplitude
dB=B0 ¼ 1:� 10�2 and a sinusoidal mean parallel electron velocity of amplitude dvxe=vte ¼ 5� 10�2. The ratio
of amplitudes and the phases of these two perturbations do not correspond to a peculiar wave mode; there-
fore, all the possible modes of wavelength k ¼ 122 could appear in the simulation. The simulations are run
over 2048 time steps, with Dt ¼ 20. The grid size is 512� 4, Dx ¼ 0:24, there are 50 macroparticles per cell.
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Fig. 1. Propagation of a right-hand circularly polarized Alfvén wave of very low amplitude. Magnetic field By as a function of position
along the direction x of the external magnetic field and time.
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Fig. 2. Propagation of a left-hand circularly polarized Alfvén wave. Magnetic field By as a function of position along the direction x of the
external magnetic field and time.
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At X ¼ 2 (position chosen arbitrarily), time series of the electric, magnetic and density fields are recorded and
Fourier transformed. Fig. 3 displays an example of frequency spectrums of time series taken at arbitrary
points in the simulation domain. Two frequencies generally appear. It means that the perturbation of wave-
length k is projected on two proper modes of the plasma that have the same wavelength. We have compared
these two modes frequencies with those given for the same plasma and the same wavelength by the Whamp
[13] program that solves semi-analytically the linear dispersion relation of the plasma. We have made a few
simulations with different angles h ¼ ðk;B0Þ. The results are summarized in Table 1. We can notice that the
frequencies in the simulation fit the frequencies linearly predicted by the Whamp program.

3.3. Ion–ion instability and plasma filamentation

Some numerical studies have been devoted to the interaction between an ion beam and a plasma in the
highly magnetized plasma of the Earth auroral zone magnetosphere. The linear and the nonlinear study of
the instability triggered by a fast ion beam had first been conducted with an explicit electrostatic code [14].
Beam ions were shown to generate oblique waves. The nonlinear beating between these oblique waves pro-
duces purely transverse waves that lead to a strong modulation of the density and of the electrostatic potential.
This study was later reproduced [10] with an electron guiding centre electromagnetic code (a code explicit in
xpe) in a simulation using the same spatial resolution, but a larger time step. The electrostatic character of this
instability was confirmed.

The magnetic field, parallel to the x axis, is given by the ratio xce=xpe ¼ 8:0 The electron thermal velocity is
vte ¼ 0:143� 10�2, the ion thermal velocity is vti ¼ 0:2� 10�4 for the background population and
vtb ¼ 0:65� 10�4 for the beam. The ion to electron mass ratio is mi=me ¼ 100. The mean velocity is 0 for
the background ions, 0:2� 10�2 for the ion beam. The mean electron velocity is 0:1� 10�2 so as to avoid
any current density in the initial conditions. The computation is performed on a numerical grid of size
256� 128, each grid cell has a size Dx ¼ 0:2� 10�2 and there are 30 particles of each species per cell (15 back-
ground ions and 15 beam ions). The time step is Dt ¼ 0:4.
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Fig. 3. Propagation of a compressional wave. Frequency spectrum of the magnetic field Y and Z components, of the electric field Y

component and of the density taken at arbitrary points in the simulation box. These spectrums are derived from the simulation ‘‘c” (see
Table 1) of compressional modes.

Table 1
Frequencies of compressive modes, for various magnetic field amplitudes and wave-magnetic field angles

Run B h x Whamp x simulation

a 2 90 0:236� 10�2 0:23–0:24� 10�2

b 2 75 0:053� 10�2 0:05–0:06� 10�2

b 2 75 0:27� 10�2 0:27� 10�2

c 2 45 0:086� 10�2 0:08� 10�2

c 2 45 0:45� 10�2 0:45–0:46� 10�2

d 2 0 0:092� 10�2 0:09� 10�2

d 2 0 0:60� 10�2 0:58� 10�2

e 0.4 60 0:073� 10�2 0:075� 10�2

e 0.4 60 0:015� 10�2 0:015� 10�2

f 0.4 0 0:122� 10�2 0:126� 10�2

f 0.4 0 0:018� 10�2 0:019� 10�2

Comparison of the values deduced from the linear theory (Whamp program) and from our simulations.
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Fig. 4 shows the evolution of electrostatic and magnetic energies. The shape of the curve of electrostatic
energy is similar to those presented in [14,10]. The first phase of the simulation is dominated by noise (because
of the low number of particles in the simulation) up to time 500 where the electrostatic energy goes above the
noise level. From time 500 to 800, the growth of the electrostatic energy is exponential. The maximum of the
electrostatic energy is reached at time 800, followed by a decrease from time 800 to 1300. The comparison of
the electrostatic to the magnetic energy lead to a characteristic ratio E=B ¼ 105 which confirm the higly elec-
trostatic character of this instability.

Fig. 5 shows the transverse component Ey of the electric field at times 800, 1920, and 3200. At time 800,
corresponding to the maximum level of the linear instability, the electric field is dominated by oblique ion
cyclotron waves with wave vectors kx 	 ky where ky=kx ¼ tan 77
. At time 3200, the ion cyclotron waves have
decayed, and the plasma is filamented. The plot at time 1920 corresponds to an intermediate case where both
decaying ion cyclotron waves, and amplified transverse waves are observed. The thickness of the filaments and
the figures shown in this section are the same as in the two previous studies [14,10].
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Fig. 4. Electric and magnetic energies in the ion–ion instability simulation.
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Because of the constraints xpe < 0:4 on the time step, and because of the dependency of time scales of the
instability with the ion mass, the two previous studies where conducted with a reduced ion to electron mass
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ratio mp=me ¼ 100. The present code, because of the need of describing the ion Larmor radius qi, was con-
strained to a rather small cell size, and consequently (Courant condition), to a small time step. With the pres-
ent code, it is much easier to simulate the ion–ion instability in similar conditions, but with a realistic mass
ratio mp=me ¼ 1836. In that case, as qi is larger, Dx ¼ 0:8� 10�2 (four times larger as in the previous simula-
tion) and Dt ¼ 4 (10 times larger as in the previous simulation, and 80 times larger than in the explicit electron
full dynamics simulation [14]) are possible. We have run such a simulation. We would not describe it into
detail, because a direct comparison with previous data is not possible, and therefore cannot contribute to val-
idate or invalidate the present code. But we can briefly summary what happens: the same oblique instability
develops, and when the nonlinear phase of the instability is reached (around time 8000), a strictly perpendic-
ular mode appears, but with less intensity than in the case of a reduced mass ratio.

3.4. Ion-temperature anisotropy instabilities

We consider mirror and ion cyclotron instabilities triggered by an ion-temperature anisotropy.
The plasma is unstable to the mirror mode in the case of a large perpendicular temperature,

T?=T k � 1 > 1=b, where the temperatures and the plasma b refer to the ion species. This approximation is
valid when b� 1 and the unstable modes correspond to quasi-perpendicular wave vectors with k?qL � 0:5,
where qL is the ion Larmor radius. The real frequency is equal to zero, the growth rate is proportional to
kk and the magnetic field and the density are anti-correlated. For smaller values of b, the mirror mode occurs
for oblique wave vectors. It can occur at inclinasion angles h ¼ ðk;B0Þ down to 45�.

The ion cyclotron instability is easier to trigger, it has a finite frequency and propagates preferentially in the
parallel direction.

We have set a simulation with the following plasma values: The magnetic field B ¼ ðB cosðhÞ;B sinðhÞ; 0Þ is
given by xce=xpe ¼ 0:1 and h ¼ 65
. The electron distribution is isotropic and vte ¼ 10�3. The ions are aniso-
tropic with a parallel thermal velocity vtk ¼ 7� 10�4 and a perpendicular thermal velocity vt? ¼ 2:5vtk. The
size of a cell is Dx ¼ 0:5, the time step is Dt ¼ 25. The simulation box is pseudo 1D, with a grid size
2048� 4 and there are 100 particles per cell. The physical length of the box, Lx ¼ 1024 allows for wave vectors
that are multiples of k0 ¼ 0:613� 10�2.

A linear computation provided by the Whamp program shows that for h ¼ 65
, there are two instabilities in
competition. The stronger is the ion cyclotron wave (ICW) instability, with a wavelength
lICW;Whamp � 160–180, i.e. 3:4� 10�2

6 kICW;Whamp 6 3:9� 10�2, a frequency xICW;Whamp ¼ 3:9� 10�5 and a
growth rate rather constant over this domain of wavelengths cICW;Whamp ¼ 3:4� 10�6. The signature of this
mode is stronger on the Bz component of the magnetic field (this component is perpendicular both to the mag-
netic field and the wave vector). There is also a mirror mode characterized by a null frequency, a perturbation
of the magnetic field (mostly visible on the By component) anti-correlated with the density fluctuations. Its
wavelength is lM;Whamp ¼ 300, i.e. kM;Whamp ¼ 2:45� 10�2, its real frequency is null and its growth rate is
cM;Whamp ¼ 1:8� 10�6.

A space–time fourier transform (FT) of Bzðx; tÞ is shown on top of Fig. 6. (The FT is made on Byðx; tÞ for x

over all the simulation box, and for 3:7� 105 < t < 7:5� 105 i.e. in the last half of the simulation, when the
most unstable modes dominate the plasma.) We can see that the dominant mode corresponds to
3:1� 10�2

6 k 6 3:6� 10�2 (mode number n ¼ 6, wavelength l ¼ 170) and 3:9� 10�5
6 x 6 4:6� 10�5.

The lower part of Fig. 6 shows the time evolution of this mode’s amplitude (in log scale). The straight line
is derived from the theoretical value cICW;Whamp of the growth rate. We can see that the values of the most
unstable wave vector, the real frequency, and the growth rate given by the simulation are consistent with those
given by the (Whamp) theoretical linear analysis.

But the ICW is not the only unstable mode. As computed with Whamp, the By component should show the
existence of the mirror instability. A space–time Fourier transform (FT) of Byðx; tÞ is shown on top of Fig. 7.
We can see that the dominant mode corresponds to 1:8� 10�2

6 k 6 2:4� 10�2 (mode number n ¼ 4, wave-
length l ¼ 256) and 0 6 x 6 7� 10�6. The time evolution of the most intense mode (n ¼ 4) is shown in the
lower part of Fig. 7. The superimposed straight line is derived from its theoretical growth rate cM;Whamp.
We can notice that the order of magnitude of the growth rate in the simulation is the same as those of the
theoretical prediction, but the fit is less accurate than with the (dominant) ICW instability. This may be
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due to electron temperature effects, as the electron temperature is modified by the growth of the ICW insta-
bility. (A precise study of this effect is beyond the scope of the present paper.) The values of the most unstable
wave vector, the real frequency, and the growth rate given by the simulation are nevertheless consistent with
the theoretical values kM;Whamp, xM;Whamp ¼ 0 and cM;Whamp given for the mirror mode.

We can see also on the top of Fig. 7 that the modes associated to the ion cyclotron instability (the same as in
Fig. 6) are visible. This is compatible with the polarization given by Whamp: the ion cyclotron modes are vis-
ible on both By and Bz while the mirror mode only appears on By .

3.5. Sheared flow instability

We set initially a rectangular domain with a uniform magnetic field, a uniform density, a uniform tempera-
ture, and a shear of plasma mean velocity. The grid size is 256� 128 and Dx ¼ 0:5. There are 80 macroparticles
per cell. The ion to electron mass ratio is reduced to mi=me ¼ 100. The timestep Dt ¼ 10. The magnetic field is
perpendicular to the simulation grid B ¼ Bz, xce=xpe ¼ 0:1. The electron thermal velocity is vte=c ¼ 0:05 and
T i ¼ T e. There are actually two shears of mean electron and ion velocity, in order to fit bi-periodic boundaries
conditions; the velocity profile is given by vðyÞ ¼ v0ftanh½ðy � y1Þ=d1� � tanh½ðy � y2Þ=d2�gwith d1 ¼ d2 ¼ 8Dx,
y1 ¼ 32Dx and y2 ¼ 64Dx. When v0 ¼ 3vti, the simulation shows that the layer is unstable. The magnetic field
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Bzðx; yÞ at three different times is displayed in Fig. 8. We can see the development of a perturbation along the
velocity shear direction. It shows that the velocity shear layer is rather strongly destabilized by a surface-
wave-like structure. According to the prediction on the MHD Kelvin–Helmhotz instability, a magnetic field
parallel to the sheared flow would tend to stabilize it. We have set an another simulation where initially, the mag-
netic field B ¼ Bx is uniform and parallel to the sheared flow. The other parameters are the same as in the pre-
vious simulation. The magnetic field has no significant perturbation (not shown). The velocity shear instability is
actually stabilized in our simulation by a magnetic field parallel to the sheared flow.

4. Choice of parameters for convergence

Implicit codes are designed to allow for larger time steps and grid sizes. Nevertheless, some conditions for
stability and accuracy are still necessary. As the present algorithm have been described in terms of time inte-
gration, the conditions on the time step are the easiest to derive. The implicitness on the electron plasma oscil-
lation allows for Dtxpe J 1, and if the ion implicit solver is implemented, Dtxpi J 1. In codes dealing with full
electron dynamics and using the Boris algorithm [11], the condition Dtxce < 1 is required, not for stability, but
for accuracy, even if in some cases, correct results can be attained when this prescription is violated [15].
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As we deal with electron guiding centres, the inverse condition
Dtxce > 1 ð71Þ

is required for accuracy; this is the only requirement for a large time step. As in every standard particle in cell
code, for stability, the computation of the charge and current densities requires vteDt < Dx and vtiDt < Dx: The
consideration of the finite grid instability may restrict the above conditions [4]. The limiting conditions for the
choice of the grid size are less obvious, they must be deduced as the counterparts of those concerning time
integration.

Let us consider the implicitness of the code upon the electron plasma frequency. It means that the high fre-
quency fluctuations associated to the thermal noise is damped. This thermal noise is electrostatic in nature and
is caused by small displacements of the electrons. Spatially, the consideration of these small displacements
lead, if we deal with a real plasma, to the concept of screening effect, characterized by the Debye length,
kD ¼ vte=xpe. When space and time effect are considered altogether (for propagating waves for instance),
we see that the Debye length appears only in relations, such as the Bohm and Gross dispersion relation, where
the typical frequency is close to xpe. Therefore, as in [7,8], for the stability of the algorithm, it is not needed to
resolve spatially the Debye length, kD. We can have Dx > kD.
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Do we have to resolve the electron inertial length c=xpe? The inertial length appears as soon as one consider
the finiteness of the mass of the electrons (we do that), and the polarization current in the Ampere equation
(we do that too). Contrary to the Debye length, the electron inertial length does not only appears in the dis-
persion relation of high frequency modes. It also acts in the propagation of low frequency waves, such as the
inertial Alfvén wave. Therefore, the electron inertial length must be resolved, and necessarily:
Dx < c=xpe: ð72Þ

A few simulations (not presented in this paper) have been made with Dxxpe=c ¼ 2 or more. They all led to the
growth of a numerical instability, with a wavelength of the order of a few grid cells only, and a slow but expo-
nential growth. After a few hundred time steps, the increase of the total energy became unacceptable, and the
divergence of the magnetic field was not negligible anymore. But simulations with a grid size xpeDx=c ¼ 0:5
gave correct results.

As with the guiding centre code [10], there is no condition upon the grid size connected to the electron Lar-
mor radius.

There are also a few restrictions on the magnetic field amplitude. The present algorithm implements the
guiding centre theory of the electron motion. The guiding centre theory can be derived, as an asymptotic com-
putation, as long as the electron gyrofrequency xce is decoupled from other frequencies in the system [9]. Then,
if xce � xpe, the conditions for the asymptotic development are not met, and the guiding centre theory does
not hold. Therefore, we must exclude the simulations where xce � xpe. The guiding centre theory also requires
that the magnetic field is not equal to zero. (This rather trivial requirement is redundant with the already men-
tioned prescription xceDt J 1.) The guiding centre approximation requires a smooth dependency of the elec-
tromagnetic field on the scale of the electron Larmor radius qLe. This is not a problem, because the usual
requirements for the discretization of the equations impose smooth variations on the scale of Dx, and with
the guiding centre approximation Dx > qLe.

Is any electron plasma be allowed? This parameter measures the ratio of the electron kinetic pressure to the
magnetic pressure. The relation below shows this ratio, and the prescriptions (71) and (72) imply that it is
majored by 1:
be ¼
vte

c

� �2 xpe

xce

� �2

< 1: ð73Þ
When the simulation for a larger electron plasma beta is required, it is necessary to use an implicit code with-
out the electron guiding centre approximation [8]. (Without the guiding centre approximation, there is no
upper value for be, but the prescription for stability (71) is replaced by the accuracy requirement
Dtxce << 1 discussed at the beginning of this section.)

The restriction on the ion plasma beta can be established on a similar ground
bi <
mi

me

: ð74Þ
This upper value is well above the values met in most magnetized space plasmas. (Having a high ion plasma
beta and a low electron plasma beta implies that the ions have a much higher temperature than the electrons.)

To conclude this section, we should emphasise the fact that these conditions are necessary, but we have no
proof that they are sufficient. We know that the implicit equations are unconditionally stable, if they are solved
exactly. But the approximations made to solve them (linearization, predictor–corrector, etc.) may restrict the
conditions of convergence. Cohen et al. [16] have studied various direct implicit schemes for the computation
of the motion of the particles. The analysis is conducted for particles in particular electromagnetic fields con-
ditions (harmonic oscillators with different strengths in the parallel and perpendicular direction), in order to
address the questions of the stability, the accuracy, and unphysical acceleration rates (cooling and heating).
The stability conditions mentioned in the present section are compatible with their conclusion, and Cohen
et al. have shown that unphysical heating or cooling are proportional to Dt3 for slow particles. Hewett and
Langdon [8] in their paper on the direct implicit code with the electron full dynamics have addressed the ques-
tion of stability when strong density inhomogeneities are met in the plasma. This question is not treated in the
present paper. They have also studied the performance and accuracy of their algorithm in two particular test



3278 F. Mottez / Journal of Computational Physics 227 (2008) 3260–3281
cases (these cases correspond to a low magnetic field and cannot be reproduced in the context of the guiding
centre approximation). It should be noted that very relevant studies have been conducted on the stability
properties of the implicit moment method [3,5]; but their conclusions cannot be transposed crudely to the case
of the direct implicit methods, even if some ideas might be developed in this context (that is out of the scope of
the present paper).

5. Discussion and conclusion

This paper introduces a new algorithm for particle in cell collisionless plasma simulations that considers the
guiding centre dynamics of the electrons and the full dynamics of the ions. Moreover, this code is implicit
upon high frequency thermal fluctuations and allows for simulations with larger time steps than explicit
PIC codes. Using a time step Dt greater than x�1

pe and x�1
pi is possible.

It was shown than we do not need to resolve the Debye length spatial scale. But, we must keep on the res-
olution of the electron inertial scale. In other words, kD ¼ vte=xpe < Dx < c=xpe.

The use of the electron guiding centre make this code interesting only for magnetized plasmas, and the con-
straints on the electron and ion plasma beta are given by (73) and (74). The constraint on the electron beta is
rather strong, and make this code unable, for instance, to simulate all the collisionless magnetized space plas-
mas encountered in the solar system. But, most of the plasmas encountered in the Earth magnetosphere, for
instance, have an electron be < 1, even when the ion plasma beta can reach large values. When the condition
be << 1 is reached, this code allows for a quite significant increase of time step and simulation domain size
compared to explicit PIC codes.

Because of the gain in time steps and grid size, it is less often necessary to use a reduced proton to electron
mass ratio: sometimes, the real value can be introduced at almost the same cost, and allows for more direct
comparisons between simulated and real plasmas.

It is, in the case of ‘‘rather cold electrons”, possible to reach easily, even with an ordinary laptop computer,
timescales and sizes that where beyond the scope of explicit particle simulations, such as the simulation of
MHD waves over several periods.

We enter a domain of scales that is actually explored with hybrid codes.
We cannot describe all the thermal behavior of the electrons, but because of their finite mass, we can study

their inertial effects (not possible for instance with the hybrid codes that use a fluid of massless electrons), and
their acceleration (as they do not have to behave as a single fluid but kinetically).

As the displacement current is kept in the Ampère equation, the Poisson equation is still required, and
charge density effects are taken into account. Therefore, this code allows for the simulation of electrostatic
waves, as was shown in Section 3.3. This point is also an advantage over hybrid simulations.

The present code can also be compared with other kinetic plasma implicit codes.
The time decentering implicit code HIDENEK [1,2] exists in a version where electron guiding centres are

taken into account. This versions allows for simulations with long time steps in magnetized plasmas. It is a
first order code in Dt, while the present algorithm is supposed to be accurate up to the second order. The elec-
tron guiding centre motion is not treated with the same equations in Tanaka’s algorithm. In particular, in
Tanaka’s code, the parallel and the perpendicular velocities are not derived at the same time, but at times
ðnþ aÞDt and ðnþ 1=2ÞDt, where a 2 ½1=2; 1� is a time decentering parameter. In the present algorithm, the
derivation of the electron motion is more accurate, and is based on simpler electron guiding centre equations
of motion.

In the time decentering implicit time differencing for the Maxwell equations is applied to the Faraday
and the Ampere equations. In the Ampere equation, the displacement current is time shifted with the
electric current and the curl of the magnetic field. This allows, if required by a large grid cell, for implic-
itness over the inertial effects. Therefore, HIDENEK, even when used with electron guiding centres
allows for simulations with Dx > c=xpe. Therefore, it is not restricted to the simulation of low beta
electrons.

Different versions of the moment method have been implemented in the codes VENUS [3] and CELESTE
[4,5], up to now, for accurate simulations when xceDt < 1. Actually, simulations with xceDt > 1 are possible,
and have been conducted where the E� B=B2 drift is taken into account.
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The code developed by Hewett and Langdon [8] is also implicit upon the electron and ion plasma frequen-
cies, but it describes the full dynamics of the electron. As said in the introduction, it is not well adapted to
plasmas with a high magnetic field. I believe that the present algorithm and the direct implicit algorithm devel-
oped by Hewett and Langdon are rather complementary. The last one is more constrained on time step
(because of the requirement Dtxce < 1), especially when the magnetic field is high, but allows for higher elec-
tron plasma betas be.

There remains a domain that is not yet accessible to implicit PIC plasma simulations: when the electron
plasma frequency is of the same order as the electron cyclotron frequency. Nor the guiding centre implicit
codes (not relevant when xce � xpe), nor the implicit electron full dynamics codes (interesting when
xpeDt > 1 but generally inaccurate when xceDt > 1) can be used advantageously in this regime which remains
a privileged domain for explicit PIC codes.
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Appendix A. Choice of a predictor of the electron velocities

At the stage of prediction, we must try to deduce how the system will evolve, but we have only an incom-
plete set of data (the set is completed at the stage of the correction). Therefore, we are in the domain of guesses
rather than formal demonstration. This is a well-known weakness of the predictor–corrector algorithms and
for this reason, different solutions for a predictor can be proposed. The choice between them is based on ‘‘gen-
eral ideas” and experimentation. Three solutions are discussed here, and the last one is retained in the present
paper.

The first, as in [7,8], consists of putting everything that is known at time n into the prediction:
~vnþ1=2 ¼ vn�1=2 þ
Dt
2

�an�1 �
lDt
m
rBn þ

qDt
4m

�vn�3=2 � BnðxnÞ � ~vnþ1=2 �HnðxnÞ; ðA:1Þ
the other terms are contained in the correction:
dvnþ1=2 ¼ þ
qDt
2m

Enþ1 þ dvnþ1=2 �H: ðA:2Þ
Only one half of the magnitude of the electric acceleration (Dt
2

�an�1) is taken into account into the prediction,
the other part (qDt

2m Enþ1) is in the correction. This solution has been tested. The predictor is good in the parallel
direction, and bad in the perpendicular direction. Why? In the parallel direction, the guiding centres have typ-
ical velocities ðvteÞ that are an order of magnitude higher than the electric acceleration (because of the electron
inertia). Therefore, taking only a half of the order of magnitude of the electric acceleration does not make a
great difference. But in the perpendicular direction, the thermal motion is not contained in the guiding centre
velocity (it is contained into the magnetic moment), and, to the first order, the amplitude of the velocity is the
cross field drift, of amplitude v? � E=B. Therefore, considering only a half of the electric field amplitude in the
prediction causes a significant error, and the correction is of the same order of magnitude than the prediction.
This does not fit the requirement that the correction should be much smaller than the prediction.

The second solution would consist of introducing the total order of magnitude of the electric acceleration
into the prediction:
~vnþ1=2 ¼ vn�1=2 þ Dt�an�1 �
lDt
m
rBn þ

qDt
4mc

�vn�3=2 � BnðxnÞ � ~vnþ1=2 �HnðxnÞ ðA:3Þ
and removing the added Dt�an�1=2 from the correction,
dvnþ1=2 ¼ þ
Dt
2

q
m

Enþ1 � �an�1

� �
þ dvnþ1=2 �H: ðA:4Þ
This solution has been tested and gives indeed a good prediction of the perpendicular motion of the guiding
centres. But the code does not work either, because of a bad behavior of the guiding centres in the parallel
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direction. Taking only half of the order of magnitude of the parallel electric acceleration must be necessary to
damp the high frequency (x ¼ xpe) plasma oscillations of the electrons.

The third solution, given in Section 2.3 by Eq. (28)–(30) is a compromise between the two above choices. It
preserves the low pass filtering over the parallel electric field of the plasma oscillations, and give a correct esti-
mate of the zeroth order E� B drift. It consists of a predictor that takes every thing known about the parallel

acceleration into account (that is about half the total value), and the total order of magnitude of the perpen-

dicular electric acceleration. This solution gives, as far as we could see, the best results; however, we have no
formal proof that it is the optimal predictor–corrector scheme, and it is not certain that such a proof would
exist for this choice and any other.

Appendix B. Demonstration of the Poisson correction formula

Let us take the divergence of (68):
r � ðIþ vion þ vÞ � E ¼ r �Q0
and the divergence of the Poisson corrected electric field,
r � Enþ1 ¼ r � E�r2W: ¼ qnþ1:
When the electric field E and Enþ1 are computed, the charge density qnþ1 is not yet known, we know only its
prediction ~qnþ1. Therefore, the Poisson equation is
r2W ¼ r �Q0 � r � ðvion þ vÞ � E� ~qnþ1 � dqnþ1; ðB:1Þ

where dqnþ1 still have to be expressed as a function of Enþ1. The charge density (38) can be predicted as
~qnþ1 ¼ þqe

X
GC

SðXj � ~xnþ1Þ þ qi

X
ions

SðXj � xnþ1Þ; ðB:2Þ
where qe ¼ �1 and qi ¼ þ1 for a plasma of electrons and protons. The charge density correction is
dqnþ1 ¼ þqe

X
GC

½SðXj � xÞ � SðXj � ~xnþ1Þ�; ðB:3Þ
where the sum is done only over the electron guiding centres. This field can be linearized trough the gradient of
the shape factor, relative to the Xj components.
dqnþ1 ¼ þqe

X
GC

�rSðXj � ~xnþ1Þdxnþ1:
Considering that only the charge density depends on the Xj components, this expression can be considered as
the single divergence of the product of the shape factor and the displacement dxnþ1. With (37), the charge den-
sity correction becomes
dqnþ1 ¼ �qeDt
X
GC

r � ½SðXj � ~xnþ1Þdvnþ1=2�:
Comparing the above expression and dJnþ1=2;GC ¼
P

GC þ qedvnþ1=2SðXj � ~xnþ1Þ we obtain a kind of correction
of the charge conservation equation:
dqnþ1 ¼ �Dtr � dJnþ1=2;GC ðB:4Þ
And using (57),
dqnþ1 ¼ �r � ðvion þ vÞ � Enþ1 � Dtr � J�: ðB:5Þ

Let us reinject the above expression for dqnþ1 into Eq. (B.1). We find
r2W ¼ r � ðQ0 þ DtJ�Þ � r � ðvion þ vÞ � ðE� Enþ1Þ � ~qnþ1: ðB:6Þ

As E� Enþ1 ¼ rW, we find Eq. (70).
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Appendix C. Initialisation of Alfvén waves

The initialisation of the Alfvén waves in Section 3.1 is based on the bi-fluid theory of the cold plasma. The
plasma consists of ions and electrons. The wave propagates along the magnetic field (k ¼ kk). The dispersion
equation of the waves is
x4 � sx3ðxce þ xciÞ þ x2½xcexci � k2c2 � ðx2
pe þ x2

piÞ� þ sx½ðxce þ xciÞk2c2 þ x2
pexci þ x2

pixce�

� k2c2xcexci

¼ 0: ðC:1Þ
It has four roots. Among these roots, the two with the lowest frequency correspond to the right-hand side and
left-hand side circularly polarized Alfvén waves. To initialize the simulations, this polynomial is solved numer-
ically for a given wave vector k. Then, the chosen root is selected (depending on the choice of polarization).
Then, a perturbation of the magnetic field is set:
ByðxÞ ¼ SB1 sinðkxÞ; ðC:2Þ
BzðxÞ ¼ B1 cosðkxÞ; ðC:3Þ
where S ¼ 	1 depends on the polarization (right of left-hand side). The polarization of the electric field, and
of the ion and electron velocities is set in accordance with the linearized cold plasma equations:
EyðxÞ ¼
x
k

BzðxÞ and EzðxÞ ¼ �
x
k

ByðxÞ; ðC:4Þ

V eyðxÞ ¼ Sce1ByðxÞ and V ezðxÞ ¼ ce1BzðxÞ; ðC:5Þ
V pyðxÞ ¼ Scp1ByðxÞ and V pzðxÞ ¼ cp1BzðxÞ; ðC:6Þ
where V ey ; V ez; V py ; V pz are the y and z components of the electron and ion velocity perturbations, and
ce1 ¼ kS=ðxþ SxceÞx and cp1 ¼ �kSmp=ðxþ SxciÞxme.
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